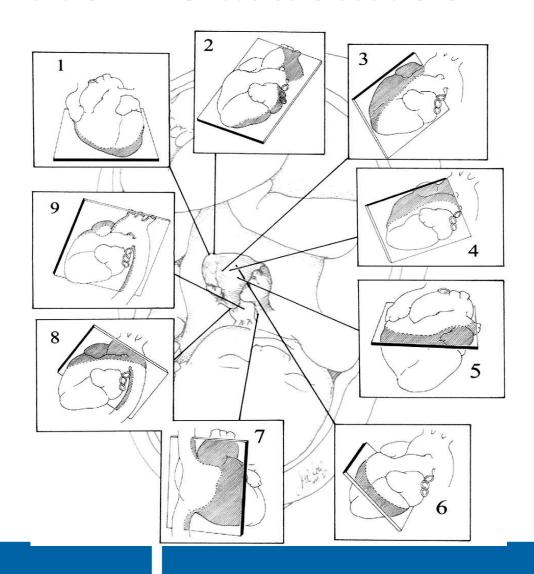
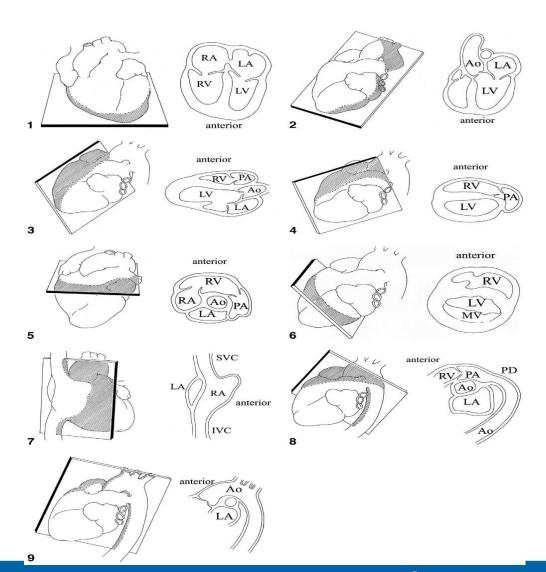
Let's Do Numbers Where And How To Measure Cardiac Structures

Melanie Kathol RDCS(AE, PE, FE)

Disclosures

No disclosures


Objectives


- To explain the importance of fetal cardiac measurements.
- To improve the consistency of fetal cardiac measurements.
- To define the cardiac pathology and determine the severity through fetal cardiac measurements

ASE Guidelines for Cardiac Measurements

- American society of echocardioigraphy (ASE) set out guidelines for fetal echo and how to standardize cardiac measurements.
- Take aways:
 - Valve annulus should be measured hinge point to hinge point
 - Measure the valves at the maximum expansion
 - Inflow valves early diastole
 - Outflow valves early systole
 - Doppler of cardiac valves are parallel to flow
 - Reproducibility use the best plane to measure the valve annulus size (Ex. Inflow valves best seen in 4 chamber view)

ASE Guidelines

"Good checklist, on the other hand are precise. They are efficient, to the point and easy to use even in the most difficult situations. They do not try to spell out everything – a checklist cannot fly a plane. Instead, they provide reminders of only the most critical and important steps – the ones that even the highly skilled professional using them could miss. Good checklists are above all practical."

- Atul Gawande author of *The Checklist Manifesto*

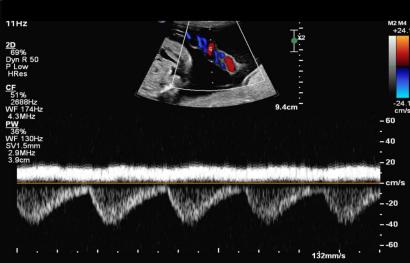
Fetal Checklist

Stomach Side	Biometry:		
Apex	 		
SVC	☐ CT Ratio		
IVC	☐ Femur Length		
Pulmonary Veins	☐ Abdominal Circumference		
Foramen Ovale	□ Ductus Venous		
Tricupsid Valve	o Doppler		
o Doppler	☐ Head Circumference		
Mitral Valve	□ BPD		
o Doppler	□ MCA		
Ventricular Septum	o Doppler		
RV Size	□ Umbilical Artery		
RV Function	o Doppler		
LV Size	☐ Umbilical Vein		
LV Function	o Doppler		
Pulmonary Valve			
o Doppler	☐ Referring Physician		
Aortic Valve	☐ Ordering Physician		
 Doppler 	☐ Sonographer Name		
LVOT Long Axis			
RPA			
LPA			
Aortic Arch			
Ductal Arch			
Heart Rate/Rhythm			

Effusions

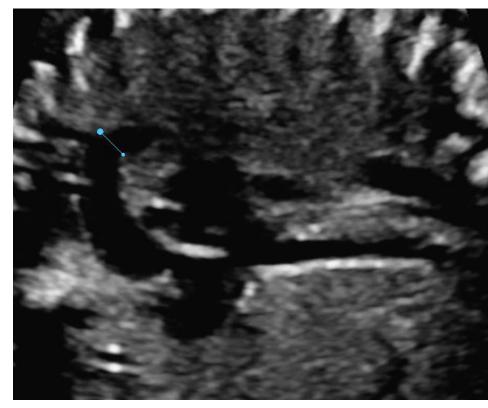
Z Scores

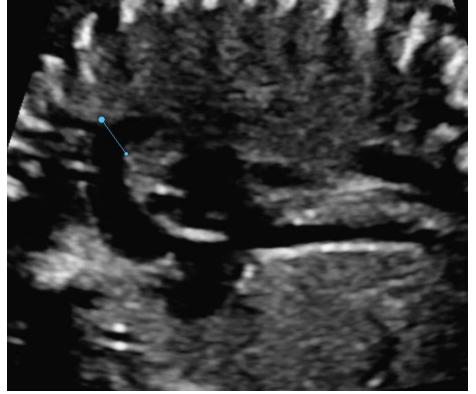
- Z score or standard score measures the deviation above or below the average standard.
- Gestational age and z-scores help determine if the size of the valve/heart structure is normal, dilated, or hypoplastic.
- Z-scores can be compared and help monitor the progression of the heart structures. (dilated/hypoplastic)
- http://parameterz.blogspot.com/2008/09/fetal-echo-z-scores.html
 - Most commonly used at CMH
- http://fetal.parameterz.com/
 - Multiple z-scores


Fetal Biometry

Biometry: CT Ratio Femur Length Abdominal Circumference **Ductus Venous** Doppler Head Circumference BPD MCA Doppler Umbilical Artery Doppler Umbilical Vein Doppler

Normal Abnormal





Importance of fetal cardiac measurements

To improve consistency of fetal cardiology measurements.

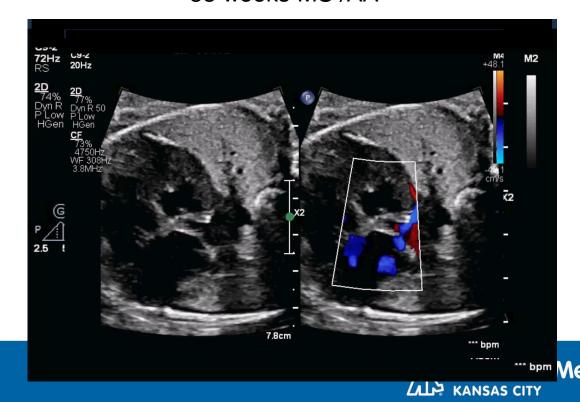
Importance of fetal cardiac measurements

 To understand the importance of fetal cardiology measurements.

23 weeks normal heart

36 weeks gestation Lt. side measures normal

35 weeks gestation moderate hypoplastic left side structures


Importance of fetal cardiac measurements

To define the cardiac pathology and determine the severity.

28 weeks MS/AA

38 weeks MS /AA

Examination

- Fetal measurements aren't easy, but consistency is key.
- Multiple scanning positions, sweeps, and views are essential to imaging a fetal heart.
- Frustrations with fetal measurements
 - Fetal positioning
 - Fetal movement/breathing
 - Shadowing
 - Gestational age
 - Heart rate/rhythm
 - Technical difficulties
 - Small structures
 - Maternal body habitus

Tips and Tricks

- Zoom, Zoom, Zoom
- Focus on specific structure/valve
- Optimize (gain and compression)
- Scroll through the clip to find the best spot to measure
- Think outside the box
- Ask for help

Normal Study

Cardiac Output

- Reason's for performing cardiac output:
 - Fetal Anemia
 - Arteriovenous malformation
 - Sacrococcygeal teratoma
 - Myelomeningocele
 - Cardiomyopathy
 - Heart block
 - Twin to Twin Transfusion

- Focused Cardiac Measurements
 - Left cardiac output(LCO)
 - Aortic annulus size
 - LVOT VTI Doppler
 - Aortic Valve VTI Doppler
 - Heart rate across aortic valve
 - Right Cardiac Output(RCO)
 - Pulmonary annulus size
 - RVOT VTI Doppler
 - Pulmonary Valve VTI Doppler
 - Heart rate across PV
 - RCO is typically higher than the LCO

Cardiac Outputs

- CO = CSA x VTI x HR
- Optimizing cardiac output:
 - Diameter accuracy the diameter can cause an error in CO
 - Long and short axis
 - Doppler angle best possible angle parallel to flow
 - Use consistent units –mL/min
- Normal cardiac output values
 - Right cardiac output is usually higher than left cardiac output.
 - 400-500mL/kg /min normal combined cardiac output

Vein of Galen patient

Define the Pathology Severity

- 2 ventricle or single ventricle?
- Mild, moderate, severe or hypoplastic
- Coarct or hypoplastic arch?
- Prostaglandins or no prostaglandins needed?

Coa

TOF

Boston Z-Scores (Measurements & Calculations)

Measurement Name	Value	Z-Score	Predicted	Normal Range
AoV annu area (vs. BSA(Haycock))	0.27 cm^2			
AoV LAX (z) (vs. BSA (Haycock))	0.58 cm			
AAO LAX (z) (vs. BSA (Haycock))	0.86 cm			
LPA (z) (vs. BSA (Haycock))	0.34 cm			
MPA (z) (vs. BSA (Haycock))	0.52 cm			
MV A4C (z) (vs. BSA (Haycock))	0.76 cm			
PV annu area (vs. BSA (Haycock))	0.20 cm^2			
PV LAX (z) (vs. BSA (Haycock))	0.50 cm			
RPA (z) (vs. BSA (Haycock))	0.39 cm			
TV A4C (z) (vs. BSA (Haycock))	0.93 cm			

Conclusion

- Consistency improves our standard practice of fetal echocardiography
- Measuring fetal heart structures improves the diagnosing of pathology and severity of a fetal heart.
- If you see something, say something

Resources

- Lopez, L., 2010. Recommendations for Quantification Methods during the perfomance of pediatric echo. [ebook] New York: American Society of Echocardiography, p.7. Available at: https://www.asecho.org/document/5175#page=1 [Accessed 6 April 2022].
- Rychik, J. (2004). *American Society of Echocardiography Guidelines and Standards for Perfomance of Fetal Echocardiogram*, 17, 1–8.
- Lee, W., Anton, T., Copel, J., & Devore, G. (2010). AIUM Practice Parameter for the Performance of Fetal Echocardiography, 1–14.

Reference Links

- https://www.asecho.org/document/5175#page=13
- https://www.onlinejase.com/action/showPdf?pii=S0894-7317%2804%2900382-7

- http://parameterz.blogspot.com/2008/09/fetal-echo-z-scores.html
 - Most commonly used at CMH
- http://fetal.parameterz.com/

