Children's National.

Total Anomalous Pulmonary Venous Return: Challenges in fetal diagnosis

National

May 14, 2024 Suma Goudar, M.D. Cardiology

Disclosures

• None

Learning Objectives

- Describe total anomalous pulmonary venous return, treatment, and outcomes
- How to identify TAPVR on fetal echo
- Risk stratification and delivery planning for TAPVR

Total anomalous Pulmonary venous return

- All four pulmonary veins do not connect to the left atrium
- Typically drain into the right atrium via an abnormal venous channel
- Requires adequate ASD for intracardiac mixing
- 3 types:
 - Supracardiac
 - Infracardiac
 - Intracardiac

Supracardiac total anomalous pulmonary venous return

- Pulm veins drain to superior caval/innominate vein via a vertical vein
- Vertical vein can be obstructed (narrowed or compressed by airway)
- Dilated caval veins and right atrium
- Most common (43%)

Infradiaphragmatic total anomalous pulmonary venous return

- Pulm veins drain below the diaphragm to join the IVC, portal vein, ductus venosus
- Vertical vein courses anterior to aorta
- commonly obstructed

Intracardiac total anomalous pulmonary venous return

- Pulm veins drain to right atrium, usually via coronary sinus
- Mixing of pulmonary venous blood and systemic venous blood in right atrium
- More subacute course of respiratory symptoms
- Difficult to diagnose in the fetus

Legend

- 1- Pulmonary veins
- 2-right atrium
- 3 -mouth of coronary sinus

Mixed type anomomalous pulmonary venous return

- Pulm veins drain via a combo of above
- This example shows left upper veins to innominate vein, remaining pulm veins to coronary sinus

Clinical presentation

- Cyanosis (mixing cardiac lesion)
 - More severe if obstructed
- Respiratory distress
 - Pulmonary overcirculation
 - Obstructed veins
- CXR: pulm venous congestion, prominent lung interstitum, pleural effusion

Treatment

- Surgery
 - Ligate vertical vein, direct anastomosis of confluence to left atrium
 - ASD closure
 - Obstructed=urgent
- Cath
 - Palliative (premature infants)
 - Stent in vertical vein

Prognosis

- 87% survival at 1 year¹
- Risk factors for mortality:
 - Obstructed
 - Pulmonary hypertension
 - Heterotaxy (30-40% mortality)
 - Single ventricle (54% survival)²
 - Lower if obstructed
 - HLHS variant

Schulz A et al. "Outcomes of TAPVD repair in neonates". JTCVS 2022 Geoffrion T et al. "Contemporary outcomes for functional single ventricle With TAPVC". JTCVS 2023

Incidence and prenatal detection

- 1 in 7809 or ~ 500 babies per year¹
- 5th most common cause of critical heart disease²
- May require urgent intervention if obstructed
- Low detection rates in the fetus (2-12%)^{2, 3, 4}

1 Mai CT et al. National population-based estimates for major birth defects, 2010-2014. Birth Defects Res 2019

2 Allan LD et al. The echo diagnosis of TAPVC in fetus Heart 2001

3 Seale AN et al. Total anomalous pulmonary venous connection.

Ultrasound Obstet Gynecol. 2012

4 Domadia S et al. Neonatal outcomes in TAPVR". Pediatr Cardiol .2018

Prenatal evaluation of pulmonary veins

- Identify at least one pulmonary vein each from the right and left side via color
- Pulse Doppler of each pulmonary vein

Normal: example

Red flags for abnormal PV drainage

- Small left atrium
- Smooth posterior left atrial wall
- Dilated caval veins
- Dilated coronary sinus
- Abnormal pulmonary venous Doppler

Example: Abnormal case #1

Example: Abnormal case # 2

Example: Abnormal case #3

Risk stratification and delivery planning

Level of Care	definition	Example CHD	Prenatal planning	Delivery	DR recs
1	CHD without physiologic instability in the 2 weeks	 Shunt (VSD/ASD) Intracardiac TAPVR 	Outpatient in 2 weeks of life	SVD	routine
2	CHD stable at delivery but needs intervention prior to discharge	 ductal-dependant (HLHS) Truncus arteriosus Unobstructed supracardiac TAPVR 	Create plan of care, transport to main hospital	SVD	Neo in DR, umbilical lines, +PGE in some cases
3	CHD with instability at birth and requires specialty care prior to intervention	 Transposition of great arteries TAPVR (supra/infracardiac 	Plan of care in DR Interventional/surg team on standby	Planned induction, bailout c/s for care coordination	Neo and cards in DR, rapid transport
4	CHD with instability requiring urgent intervention/surgery	 HLHS with intact atrial septum Severe Ebstein's anomaly Obstructed TAPVR 	Delivery at Childrens Hospital with specialized team in delivery room	Planned c/s	Specialized teams in DR, rapid transport to OR/cath lab

Risk stratification: fetus with TAPVR

- Based on risk of postnatal obstruction
- Red flags:
 - Vertical vein peak Doppler velocity > 0.74 m/s mmHg¹
 - Reduced pulsatility of flow in the vertical vein²

1 Domadia et al. "Neonatal outcomes in TAPVR" Pediatr Cardiol 2018 2Campbell et al" Fetal Doppler Echo assessment predicts severe postnatal obstruction in TAPVR. JASE 2022

unobstructed

obstructed

Risk stratification: role of hyperoxia

- Obstruction may be underappreciated since pulmonary blood flow is low in the fetus
- Administer oxygen to mother for 10-15 minutes
- Pulmonary blood flow increases with oxygen- unveil gradient
- May be useful in predicting postnatal course in case series¹

Baseline

Post-hyperoxia

Schidlow D, Donofrio MT. "Prenatal maternal hyperoxygenation testing and implications..." Am

Risk stratification: role of fetal MRI

- Fetal MRI can evaluate lung parenchyma
- Aids risk stratification and prognosis^{1,2}
- Typically performed in late gestation (last prenatal visit)
- Obstructed pulmonary veins can lead to lung congestion and lymphangiectasia= worse prognosis and more instability

Ryd D et al. Pediatrics 2021
 Barrera C et al. Pediatr Radiol. 2021

Summary

- TAPVR is critical cyanotic heart defect that frequently requires urgent intervention and good long-term outcomes
- Infrequently detected in-utero but greatly improves morbidity and mortality when it is
- Evaluation of pulmonary veins is critical in performance of fetal echo
- Dilated caval veins/coronary sinus, abnormal venous structures in 3VV and sagittal views and abnormal pulmonary venous Dopplers are red flags and warrant referral

Thank You!

